ADULT CRITICAL CARE SERVICES

Clinical Guidelines for Tracheostomy Care

June 2016
On behalf of the Tracheostomy Care Group,

South Tees Hospitals NHS FT
TABLE OF CONTENTS

1. INTRODUCTION ... 4
 Key Issues... 5
 Tracheostomy Care Group at South Tees Hospitals ... 6

2. TRACHEOSTOMIES AND LARYNGECTOMIES ... 7
 Definitions... 7
 Tracheostomy Indications .. 11
 Tracheostomy Complications ... 13
 Tracheostomy Tubes .. 15

3. ROUTINE CARE OF THE PATIENT WITH A TRACHEOSTOMY 23
 The Tracheostomy Care Bundle (6 Elements) ... 23
 I. Humidification ... 23
 II. Suctioning ... 29
 III. Tracheostomy Inner Tube Cleaning ... 34
 IV. Stoma Care ... 36
 V. Cuff Pressure .. 36
 VI. Emergency Equipment .. 39
 Changing of tracheostomy tubes .. 40
 Assessment and management for decannulation ... 44

4. MINIMUM STANDARDS FOR TRACHEOSTOMY CARE AND SAFETY ON THE CLINICAL AREAS .. 47
 Tracheostomy Care Training: Staff Competencies ... 47
 Equipment .. 48

5. RESUSCITATION AND EMERGENCY MANAGEMENT OF THE PATIENT WITH A TRACHEOSTOMY OR LARYNGECTOMY .. 50
 Emergency Tracheostomy Box ... 50
 Algorithm 1: Breathing difficulties in the patient with tracheostomy and patent upper airway 51
 Algorithm 2: Breathing difficulties in the patient with laryngectomy 52
 Algorithm 3: Advanced airway management of the patient with a tracheostomy tube 53

6. POST OPERATIVE CARE OF THE TRACHEOSTOMY AND LARYNGECTOMY PATIENT 54

7. SWALLOWING .. 55

8. COMMUNICATION .. 58

9. CARE OF PATIENTS ADMITTED WITH LONG TERM TRACHEOSTOMY 62

10. TRACHEOSTOMY CARE DOCUMENTATION ... 63
 Tracheostomy Observation Chart ... 63
 Tracheostomy Transfer of Care Checklist (JCUH) .. 64
 Tracheostomy Transfer of Care Checklist (FH) ... 65
 Tracheostomy Patient Awareness Bed Sign .. 66
 Laryngectomy Patient Awareness Bed Sign .. 66
 Critical Care Tracheostomy Patient Information Leaflet .. 68
 Percutaneous Tracheostomy Consent Form .. 69
 Percutaneous Tracheostomy Operating Procedure .. 70
 Percutaneous Tracheostomy Procedure WHO Checklist ... 71
 Tracheostomy Decannulation Checklist ... 72

June 2016

Critical Care Services
11. TRACHEOSTOMY EDUCATION AND COMPETENCIES .. 74
12. AUDIT TOOLS .. 75
REFERENCES .. 76
1. INTRODUCTION

Tracheostomy is a common procedure in intensive care. As with all procedures, the benefits are associated with risk, both during and after insertion.

The indications for temporary tracheostomy in the intensive care environment have centered upon treatment for upper airway obstruction, the avoidance of the laryngeal complications of prolonged tracheal intubation and the continued need to protect and maintain the airway in patients with severe neurological injury. More recently temporary tracheostomy has become regarded as beneficial for the general critical care population. This has coincided with the development of percutaneous techniques that enable a temporary tracheostomy to be inserted by the critical care physician as a bedside procedure. The result is that temporary tracheostomy has become a more commonplace, and frequently early, intervention in critical care units.

At the same time, pressure on intensive care beds and a desire to use resources effectively has encouraged earlier discharge to intermediate and ward care. The very effectiveness of tracheostomy in accelerating weaning from mechanical ventilation and discharge from level 3 care often results in patients with temporary tracheostomies being cared for in multiple locations throughout an organisation. This creates a risk that they are cared for separately from the clinical services that are best placed to identify and treat the potentially life threatening complications associated with a temporary tracheostomy. It is therefore very important that there is clear documentation and communication, together with explicit responsibility and training for the healthcare staff involved. Also, there are longer-term respiratory support for a range of conditions with an associated increased use of tracheostomy, and the drive to de-escalate intensity of care as soon as possible.

A patient with a tracheostomy or laryngectomy is at risk of death or harm if inappropriate or inadequate care is provided. This patient group requires airway devices to be safely inserted, securely positioned and appropriately cared for, in order to continue to provide the patient with a patent airway. Failure to do so may lead to a displaced or blocked tube, which if not dealt with immediately, may be fatal within minutes.

This clinical guideline focus on the care of adult patients with tracheostomies following an episode of critical illness, but also those patients that are in the community with tracheostomies and get readmitted to the acute hospitals. There is a separate guideline for paediatric tracheostomy care.
Key Issues

Following recommendations from lessons learnt from serious untoward incidents related to the care of patients with tracheostomies and the advice from the National Tracheostomy Safety project, we have summarized the following key issues from those documents:

- Identify a clinical lead in each NHS Trust or institution to co-ordinate the management of patients with tracheostomies.
- Trusts must have a local policy in place, which outlines the expected management of patients with a tracheostomy or laryngectomy.
- Identify appropriate environments in which to manage patients with tracheostomies and laryngectomy.
- Identify a comprehensive risk assessment of the patient that is agreed locally to determine the dependency of the patient, the level of the observation and visibility required. The frequency of risk assessment should be determined by the patient’s condition, clinical environment, staffing levels, skills and competence. The risk assessment must be retained in the patient record as appropriate.
- Trusts who are unable to develop systems to reduce risks effectively in all clinical areas should consider identifying designated areas where the risks are reduced.
- Equipment for the management of the tracheostomy including suction should be kept near the patient at all times. The equipment should be checked, as a minimum on a daily basis.
- Emergency equipment must remain immediately available at the bedside and accompany the patient if they leave their base location.
- All tracheostomy tubes used should have a removable inner cannula. Exceptions to this must be clearly documented in the patient’s medical record and a date for review determined. The inner cannula should be regularly checked and cleaned as this greatly reduces the risk of a tracheostomy tube becoming blocked.
- Patients with tracheostomies must be cared for by staff that have been appropriately trained and are currently considered competent in tracheostomy care. Staff escorting the patient outside of the clinical area must be competent in dealing with suctioning and in managing a tracheostomy emergency. All training received should be documented.
- All staff caring for patient with tracheostomies and laryngectomies must be competent to do so, both in routine care and in the emergency situation. This includes designated wards and clinical areas, and also acute services such as acute medical units and emergency departments who may be expected to see tracheostomy complications.
- Tracheostomy training and support is locally coordinated by the clinical lead. Trusts must ensure that training programmes are in accordance with best evidence-based guidelines on the management of a tracheostomy.
- Emergency algorithms should be taught, displayed and used to manage tracheostomy or laryngectomy emergencies. Essential information can be displayed at the bedside to assist in managing an emergency at which the attending staff may not know the history of the patient.
- These recommendations can be extended to carers outside of the hospital environment, in nursing homes, patient’s own homes and to those responding to patients who are community based.
Tracheostomy Care Group at South Tees Hospitals

The broad purpose of this multidisciplinary group is to enhance the care and safety of patients with tracheostomy with particular remit to those performed in the critical care setting.

More specific aims are:

- To ensure best practice is utilised throughout the trust on the management of tracheostomy patients
- To produce evidence based guidelines on optimal tracheostomy care for use within the James Cook University Hospital and the Friarage Hospital Northallerton
- Provide teaching sessions to ward areas that frequently see tracheostomy patients based on these guidelines
- To audit aspects of tracheostomy care, particularly critical incidences and compliance with the guidelines
- To provide a competency package for ward staff caring for tracheostomy patients.

Overall it is expected that improvements in tracheostomy care should lead to:

- Decrease in tracheostomy related critical incidents
- Decrease in hospital length of stay
- Improvement in patient outcomes
- Overall cost savings

The group membership incorporates clinical staff from critical care areas, ENT and maxillo-facial surgery, trauma, neurosciences, spinal cord injury services, as well as educators from critical care areas and the resuscitation department. The membership includes nurses, physiotherapists, speech and language therapist, doctors and educators.

If you require any information about the Tracheostomy Care Group at South Tees Hospitals, please contact us via the Critical Care Services at South Tees email address:

tracheostomycaregroup@ccs-sth.org
2. TRACHEOSTOMIES AND LARYNGECTOMIES

Definitions

A tracheostomy is a surgical operation that creates an artificial opening made into the trachea through the neck. This may be temporary or permanent. A tracheostomy tube is usually inserted, providing a patent opening. The tube enables air-flow to enter the trachea and lungs directly, bypassing the nose, pharynx and larynx.

Tracheostomies are performed in Head and Neck Surgery and in Critical Care Units. There are about 5000 tracheostomies performed in operating theatres every year in England and an estimated amount between 10000-15000 percutaneous tracheostomies performed in critical care units.
A laryngectomy is a surgical procedure to remove part or all of the larynx, usually to treat cancer of the larynx. A total laryngectomy implies the complete surgical removal of the larynx and therefore a disconnection of the upper airway (nose and mouth) from the lungs. A patient with a laryngectomy will need to have a permanent opening of the trachea to the front of the neck to allow breathing. These patients may or may not have a tracheostomy tube inserted. Patients with laryngectomies are also known as neck breathers.

The illustration below shows the difference between a tracheostomy and a laryngectomy.

There are a variety of tracheostomy techniques but they all aim to enter the trachea around the gap between the second and third tracheal rings. Emergency access to the airway can be achieved through the relatively avascular cricothyroid membrane. This is reasonably anterior in the neck and close to the surface, and can be identified by feeling for the ‘dent’ below the ‘Adam’s Apple’ or thyroid cartilage. The further down the neck towards the chest you palpate, the deeper into the neck the trachea goes.

Types of tracheostomy

Tracheostomy may be temporary or long term/permanent, and may be formed electively or as an emergency procedure. They may also be classified by their method of initial insertion, either surgical or percutaneous.

- **Temporary** will be formed when patients require long/short term respiratory support or cannot maintain the patency of their own airway. They can also provide a degree of ‘protection’ of the airways against aspiration if the swallowing or neurological control mechanisms of the larynx or pharynx are damaged (commonly in head injuries or neurological diseases). Certain maxillofacial or ENT surgical procedures require a temporary tracheostomy to facilitate the procedure. These tubes will be removed if and when the patient recovers.
• **Long term/permanent** are used when the underlying condition is chronic, permanent or progressive. This includes carcinoma of the naso-oropharynx or larynx. Dependent on the stage of the disease either a tracheostomy or a laryngectomy will be performed. Some patients that need chronic respiratory support, long term airway protection or help with secretion clearance may also require a long term/permanent tracheostomy.

• **Surgical tracheostomy:** this technique is usually carried out in an operating theatre where conditions are sterile and lighting is good. It is possible to perform a surgical tracheostomy at the bedside in the ICU. General anaesthesia is commonly used, however surgical tracheostomies can also be carried out under local anaesthetic. A surgical opening is made into the skin and the tissues of the neck are dissected down to the trachea. The trachea is entered by forming a slit, a window or a flap into which a tube is placed. The tube may then be sutured to the skin and/or secured with cloth ties or a holder. Surgical tracheostomies may be formed as part of ENT or Maxillofacial surgical procedures, usually during face and neck dissections for tumour removal. Importantly, in procedures where surgical removal of the larynx is undertaken, a laryngectomy stoma is created. This means that there is no connection from the mouth or nose to the trachea.

![Surgical tracheostomies: Horizontal incision, window, vertical incision with stay sutures and Bjorg flap](image)

• **Percutaneous tracheostomy** is the most commonly used technique in critical care as it is simple, relatively quick and can be performed at the bedside using anaesthetic sedation and local anaesthetic. Moving critically ill patients to the operating theatre can be challenging, so a safe, bedside procedure often makes this the technique of choice in the critically ill. The procedure involves the insertion of a needle through the neck into the trachea followed by a guide-wire through the needle. The needle is removed and the tract made gradually larger by inserting a series of progressively larger dilators over the wire until the stoma is large enough to fit a suitable tube (Seldinger technique). The tube is then secured by cloth ties, sutures or a holder. The procedure is performed under fibroptic endoscopic guidance.
Clinical Guidelines for Tracheostomy Care

Percutaneous tracheostomies set
Tracheostomy Indications

A tracheostomy tube may be inserted for many reasons by either a surgical or a percutaneous procedure:

- To secure and clear an airway in upper respiratory tract obstruction
- To facilitate the removal of bronchial secretions
- To facilitate long term ventilation
- To enable weaning from positive pressure ventilation in patients with respiratory failure
- To protect/minimise aspiration in the absence of laryngeal reflexes
- To obtain an airway in patients with injuries or following surgery to the head and neck. This includes patients who require a laryngectomy and may not have tracheostomy tube.
- Laryngectomy is indicated when the removal of the larynx and diversion of the lower trachea to a permanent stoma on the lower neck is needed for cases of advanced laryngeal cancer which cannot be controlled with radiation therapy.

A tracheostomy provides another significant advantage to patients such as reducing the anatomical dead space by approximately 150mls. This means a reduction on the work of breathing which will help facilitate weaning from mechanical ventilation in patients with resolving respiratory failure.

There are also a number of disadvantages of having tracheostomies that require management, such as the reduction in the filtration, warming humidification of gases and the subsequent risk of tube occlusion.
There is no convincing data that can guide clinicians as to the timing of tracheostomy. For specific circumstances such as extensive elective head and neck surgery, the decision is straightforward. However, balancing the risks of managing an airway with prolonged endotracheal tube (ETT) intubation versus the risks of tracheostomy (procedural and post-placement) is difficult and must be made on an individual basis.

Risks of prolonged endotracheal intubation (ETT):

- Unpleasant to tolerate
- Prolonged sedation required
- Difficult to re-institute respiratory support without re-intubation
- Upper airway trauma
- Damage to vocal cords
- Breaches larynx, risks aspiration
- Blockage and displacement
Risks of tracheostomy:

- Invasive procedure
- Bleeding and airway loss during procedure
- Stoma infection or breakdown
- Scarring, tracheomalacia, stenosis
- Blockage and displacement
- Damage to adjacent structures

Tracheostomy Complications

Complications can be divided into those associated with insertion of the tracheostomy (surgical or percutaneous) or those which arise following the procedure (usually blocked or displaced tracheostomy tubes). Both can be serious and sometimes fatal.

These complications are usually grouped as follows.

1. **Immediate Complications (intra-operative period)**

 - Bleeding
 - Tracheal laceration
 - Tracheoesophageal laceration
 - Tube malposition, either complete removal or displacement into a false tract leading to the mediastinum
 - Recurrent laryngeal nerve injury
 - Pneumothorax
 - Pneumomediastinum (air leaks from the lung inside the parietal pleura and extends along the bronchial walls)

2. **Delayed Complications (post-operative period < 7 days)**

 - Tube blockage with secretions or blood.

May be sudden or gradual onset. Inserting a tracheostomy tube bypasses the natural mechanisms to moisten and warm inhaled air which mean the lungs will receive cool, dry air. Dry air entering the lungs may reduce the motility of the secretions within the lungs and may reduce the function of the cilia. In addition the patient may not be able to cough and/or clear the secretions from their airways through the tracheostomy. This may cause the tracheostomy to become blocked by these thick or dry secretions. Blocked tracheostomy tubes can be minimised by careful humidification, tracheal suction and inner tube care. However it is necessary to keep emergency equipment at hand at all times as a blocked tube may lead to respiratory arrest.
• Partial or complete tube displacement.

The tracheostomy tube can be displaced partially or completely and come out of the stoma or out of the trachea into the soft tissue of the neck. If not properly secured, the tube may become displaced by coughing, because of its weight or the weight of attached breathing circuits, or by patient interference. Partial tube displacement is more dangerous as it is not always visibly obvious that the tracheostomy is not patent. In order to keep tracheostomy tubes in position they must be secured carefully and any concerns raised by the patient or nursing staff must be promptly investigated.

• Infection of the stoma site.

There is a risk of site infection caused by introduction of organisms from the sputum. Careful observation and dressing of the site will reduce this. A stoma should be treated as a surgical wound and cared for appropriately. As the stoma is an open wound opening directly into the respiratory tract there is potential for the lower respiratory tract to become infected. Poor suction technique with inadequate infection, prevention and control measures also increase the incidence of infection.

• Infection of the bronchial tree – pneumonia.

A build-up of secretions may also lead to consolidation and lung collapse, and this may lead to pneumonia. This can also be minimised by careful humidification, tracheal suction and inner tube care, and may be helped by suctioning above the cuff with specific subglottic suction tubes. Aspiration of gastric contents may also lead to pneumonia. This can occur with patients who are unable to swallow safely. Any patient who you suspect may have aspirated will need to have a SALT (Speech and Language Team) assessment, be kept NBM and referred to a dietician to facilitate NG feeding.

• Haemorrhage - local tissue trauma or erosion through blood vessels.

It is common for some bleeding to occur after a tracheostomy has been performed. This usually settles with a few days. Bleeding can occasionally be significant or even catastrophic. Bleeding can be from the trachea, stoma or surrounding tissues and can be due to direct trauma of the tissues, puncture or injury to adjacent blood vessels or the tube or cuff eroding into surrounding tissues or vessels over time. Bleeding can also come from the lungs themselves and become evident through tracheal suction. These problems are compounded in a patient with a coagulopathy. If a patient with a cuffed tracheostomy in situ starts to bleed, then it is recommended that the cuff is inflated as this may have a tamponading effect on the bleeding point. Clinical and endoscopic examination is urgently required by a healthcare professional with the correct competence.

• Ulceration, and/or necrosis of trachea.

Damage to the trachea may be caused by cuff pressure on the mucosa or by poor tracheal suctioning techniques. All tracheostomy tubes now have low pressure cuffs, however over-inflation should still be avoided. The pressure in the cuff should be just adequate to prevent air leakage. Please refer to tracheal cuff pressure guidance. Mucosal ulceration by tube migration. Can result due to loose tapes or patient intervention.
• Risk of occlusion of the tracheostomy tube in patients who have difficulty extending their neck. This patient population tends to be the obese or fatigues.
• Tracheo-oesophageal fistula formation.

3. Late Complications

• Tracheal stenosis, narrowing of the tracheal lumen attributable to scar tissue at the level of the stoma, the cuff or tube tip
• Tracheoesophageal fistula (opening between the trachea and the oesophagus attributable to pressure necrosis caused by the tracheostomy tube)
• Tracheocutaneous fistula (opening between trachea and skin usually when a stoma fails to close following removal of the tracheostomy tube)
• Tracheo-innominate artery fistula (opening between trachea and innominate artery causing haemorrhage)
• Tracheomalacia (weakness of the tracheal wall and supporting cartilage usually resulting from ischaemia that damages the tracheal wall)
• Fractured tracheal cartilage rings
• Mucosal ulceration Granulomata of the trachea may cause respiratory difficulty when the tracheostomy tube is removed.
• Blocked tubes may occur at any time, especially if secretions become thick, the secretions are not suctioned appropriately and humidification is not used.

Tracheostomy Tubes

There are a variety of tracheostomy tubes and devices uses across South Tees Hospitals depending on which was the original indication for tracheostomy tube and the progression of the patient, and the particular preferences of the surgeon.

It is important that the staff involved with care of tracheostomy patients are kept informed and up to date of the all tracheostomy different tubes used. There is also a need for formal announcements when new equipment and devices are introduced to be cascade to relevant staff.

The main components of a tracheostomy tube are universal across the range of designs. The tube shaft is arc shaped and designed as either a single cannula or dual cannula (inner and outer) tracheostomy tube. It may have a cuff to provide an airtight seal, to facilitate positive pressure ventilation and reduce the risk of aspiration. For ease of insertion it is supplied with an obturator. The neck flange helps secure the tracheostomy tube to the skin of the neck and stabilise its position.
Clinical Guidelines for Tracheostomy Care

Single and dual cannula tracheostomy tubes

Dual cannula tubes are inherently safer as the inner cannula may be removed quickly in the event of obstruction and are therefore preferred for patients who continue to require a tracheostomy tube after discharge from the Critical Care Unit. Staff caring for these patients should be knowledgeable about the design and function of these tubes. The type and size of a tracheostomy tube should be reviewed continuously as a patient’s condition changes. A wide range of specialised tubes are employed to optimise vocalization and comfort.

Cuffed tracheostomy tubes

To reduce the risk of tracheal injury, cuff management should include careful inflation technique to the minimal occlusion volume (MOV), followed by monitoring of inflation volume and cuff pressure. The cuff pressure should be maintained between 25-34 cmH2O, but preferably at the bottom end of this range, in order to minimize the risks of both tracheal wall injury and aspiration.

The cuff on the tracheostomy tubes are usually made of plastic and filled with air with a syringe via the pilot tube. There are specialised tubes in the market with self expanding foam cuff and tubes with cuff to be filled with water. It is important to be aware of the specific tracheostomy tube that the patient is using and to utilise communication tools such as bed signs to inform and alert health professionals of the characteristics of the tracheostomy tube used.
Non-cuffed (cuffless) tracheostomy tubes

These tubes are usually used for patients who can protect their own airway, have an adequate cough reflex and most importantly can manage their own secretions. They remove the risk of tracheal damage caused by inflation of the cuff, may aid swallowing and communication with the concomitant use of a speaking valve. However, a speaking valve can only be used in patients who have airflow through their pharynx into their nose and mouth.
Clinical Guidelines for Tracheostomy Care

Non-cuffed tracheostomy tube

Non-fenestrated tracheostomy tubes

Almost universally the tracheostomy tubes that are first inserted are non-fenestrated.

Non-fenestrated tracheostomy tubes are also favoured increasingly by some clinicians for the longer term. There is some evidence that the use of fenestrations increase the formation of granulation tissue which could come embedded into the fenestrations. This would increase the risk of bleeding and trauma when changing the tracheostomy tube.

Fenestrated tracheostomy tubes

Fenestrated tubes may be considered for patients undergoing weaning from ventilation, as they facilitate speech and reduce the work of breathing in comparison to non-fenestrated tubes.

A fiberoptic inspection through the upper airway should take place for the adequate use of fenestrated tubes to confirm alignment of fenestrations within the tracheal lumen. Caution should be exerted when changing fenestrated tracheostomy tubes as there is a possibility that granulation tissue may have come embedded into the fenestrations. This could make the change problematic due to bleeding.

Staff should be aware that two types of inner cannulae are supplied with fenestrated tubes; one with a fenestration to promote air flow and speech; and one without a fenestration for suctioning.

Subglottic suction tubes

Tubes are now available from various manufacturers which will allow continuous or intermittent suction from any material that accumulated above the inflated cuff of a tracheostomy tube. There is some evidence related to endotracheal tubes that subglottic suction may reduce the incidence of a ventilator associated pneumonia occurring in those patients who require mechanical ventilation.
It is good practice to change the tracheostomy tubes with subglottic suction to simpler tubes with no subglottic port or no cuff on discharge from critical care areas to minimize complications and confusion with ports.

Standard, extra lengths and variable flanges tracheostomy tubes

Tracheostomy tubes are available in both standard and longer lengths. Standard length tubes are generally designed to accommodate patients with normal airway anatomy. However, the length and angulation of standard design tracheostomy tubes may be too short and unsuitable for some critical care patients, risking complications.

Longer tracheostomy tubes are available with a fixed or adjustable flange (fixed or adjustable length). Fixed longer length tubes may be elongated in either the proximal portion (between the stoma and the trachea) or the distal portion of the tube (within the trachea).

Extra proximal length is needed for patients with deep set tracheas i.e. large neck due to obesity, trauma or neck mass. Extra distal length is needed for patients with tracheal problems but normal neck anatomy i.e. tracheomalacia, tracheal stenosis.

A flexible (reinforced) tracheostomy tube with an adjustable flange can be used in any of the above patients, although the locking mechanism of the neck flange may prove cumbersome for the patient, making it less suitable for long term use. In these cases, a dual cannula fixed longer length tube with the appropriate proximal or distal extension for the patient’s anatomy may be more comfortable.
It is important that the type of tracheostomy tube use for the individual patient is documented, including the reason, type, make length and distance of adjusting flange.

![Reinforced cuffed tracheostomy tube with inner tube (dark blue ring) and adjustable flange](image)

![Cuffed tracheostomy tube with inner tube (outside) and adjustable flange](image)

Silver tracheostomy tubes

Specialised long term tracheostomy tubes are used in some patients. These are made of silver because the metal is inert and does not irritate the tissues. The most commonly used silver tube is the Silver-Negus. Silver tubes are often seen as an economical long term tube, and has the benefit of allowing maximum airflow into the airway due to ultra thin walls.

The sizes of the tubes for adults vary from 26-40 FG. The letters FG stand for French gauge. The number represents the circumference of the inner tube measured in millimetres. As a rough guide, the FG size is 4 times the standard tracheostomy tube size.
Silver tracheostomy tubes will need an adaptor or changing to standard tubes in case of emergency needing to connect to a resuscitation self-inflating ambu bag. If a patient has a long term silver tracheostomy tube and is admitted to hospital as an elective or emergency case, there is no need to routinely replace the usual silver tube of the patient for a standard one with a connector just in case of an emergency.

Patients with silver tracheostomy tubes should have:

- clear documentation of the reason for the long term tracheostomy
- a bedside warning sign for tracheostomy with patent upper airway (green) or laryngectomy sign (pink)
- an emergency tracheostomy box by the bed side which will contain a size 7 and a size 8 cuffed tracheostomy tubes for case of an emergency

The signs and the emergency tracheostomy boxes can be obtained by contacting critical care outreach (bleep 7000 JCUH, bleep 784 FHN).

Mini-tracheostomy tubes

The mini-tracheostomy tube is another type of non-cuffed tube. These tubes are typically 4 mm internal diameter. They are primarily designed to allow airway toilet (suction). They are used sometimes prior to decannulation. If the patient has thick secretions they tend to block easily and they become less efficient as only size 10 suction catheters can fit through.

They are too small to provide any ventilation or removal of carbon dioxide. They can only be considered an emergency method of oxygenation until more definite airway is achieved.
In summary, there are multiple companies in the market producing a number of specialised tracheotomy tubes with different characteristics. Some tubes are also custom built for specific individual needs. It is very important to document the specific characteristics of the tracheostomy tube used by each individual patient in the clinical notes.
3. ROUTINE CARE OF THE PATIENT WITH A TRACHEOSTOMY

The Tracheostomy Care Bundle (6 Elements)

- I. Humidification
- II. Suctioning
- III. Cleaning of the tracheostomy inner tube
- IV. Stoma care
- V. Cuff pressure
- VI. Emergency equipment

I. Humidification

A tracheostomy bypasses the normal upper airway mechanisms for humidification, filtration and warming of inspired gases. It is vital that a method of artificial humidification is utilised when a tracheostomy tube is in situ or in patients who have a laryngectomy.

Inadequate humidification may lead to:

- impaired mucociliary transport
- retained secretions
- inflammation of epithelium
- keratinisation and ulceration of the tracheal mucosa
- atelectasis/pneumonia
- impaired gas exchange
- potential life-threatening blockage of the tracheostomy with tenacious sputum

The provision of adequate humidification of inspired gases is therefore essential in all tracheostomy/laryngectomy patients.
There are various methods to provide supplementary humidification according to patient’s individual needs, however it is most important to ensure the patient has adequate systemic hydration. If the patient has been assessed as having a competent swallow they may be able to maintain some or all of their own hydration through drinking, otherwise hydration should be ensured via enteral or parenteral route.

Humidification can be classed as active or passive. Active humidification is adding a humidifier (cold or heated) to the inspired gases e.g. Fischer Paykel. Passive humidification is preventing the loss of humidified air from the tracheobronchial tree e.g. HME. The ability of any device, regardless of operation, to prevent drying of secretions depends on delivered gas temperature and relative humidity. However, the device should help to maintain body temperature, be convenient and cost effective and suited to the patient. However assessing the adequacy of humidification is very difficult. Therefore observation of adequacy of humidification should include:

- evidence of airway obstruction
- increased need to clean inner cannulae
- need for oxygen
- respiratory rate
- ability to cough
- need for suctioning
- tenacity of secretions

Those with pre-existing respiratory disease - COPD, CF, bronchiectasis etc, who have a tracheostomy are at an increased risk of thick tenacious secretions and should be closely monitored for respiratory deterioration. Ideally active heated humidification for these patients should be available at all times.

Methods of humidification for tracheostomy ventilated patients (critical care areas)

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients receive humidified circuit with Fisher & Paykel™ water system.</td>
<td>Warmed water carries a greater relative humidity.</td>
</tr>
<tr>
<td>For patients with thick secretions, ensure 4 -6 hourly prescription of saline nebulisers.</td>
<td>To loosen secretions, to prevent atelectasis and sputum thickening.</td>
</tr>
<tr>
<td>In patients with very difficult to clear secretions, use nebulisers and mucolytics as indicated:</td>
<td>To improve mobility of secretions, loosen secretions, to prevent atelectasis and sputum thickening and improve expiratory flow.</td>
</tr>
<tr>
<td>- Mucokinetics (Hypertonic Saline >2.7%)</td>
<td></td>
</tr>
<tr>
<td>- Mucolytics (acetylcysteine, DNA-ase)</td>
<td></td>
</tr>
<tr>
<td>- Bronchodilators</td>
<td></td>
</tr>
<tr>
<td>Ensure adequate systemic hydration via oral, enteral or parenteral route</td>
<td>To prevent dehydration and decrease thickening of secretions</td>
</tr>
</tbody>
</table>
Self-ventilating patients tracheostomy requiring oxygen therapy

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients to receive humidification via Fisher & Paykel circuit.</td>
<td>Warmed water carries a greater relative humidity.</td>
</tr>
<tr>
<td>For patients with thick secretions, ensure 4-6 hourly prescription of saline nebulisers.</td>
<td>To loosen and thin secretions, to prevent atelectasis and sputum consolidation.</td>
</tr>
<tr>
<td>In patients with very difficult to clear secretions, use nebulisers and mucolytics as indicated:</td>
<td>To improve mobility of secretions, loosen secretions, to prevent atelectasis and sputum thickening and improve expiratory flow.</td>
</tr>
<tr>
<td>• Mucokinetics (Hypertonic Saline >2.7%)</td>
<td></td>
</tr>
<tr>
<td>• Mucolytics (acetylcysteine, DNA-ase)</td>
<td></td>
</tr>
<tr>
<td>• Bronchodilators</td>
<td></td>
</tr>
<tr>
<td>• Oral carbocysteine</td>
<td></td>
</tr>
<tr>
<td>Ensure adequate systemic hydration via oral, enteral or parenteral route</td>
<td>To prevent dehydration and decrease thickening of secretions</td>
</tr>
</tbody>
</table>

Self-ventilating patients not requiring oxygen therapy

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all patients with loose or no evidence of secretions use a HME. The Swedish nose protector should be used.</td>
<td>To moisten inspired gases by trapping and rebreathing humidity, to prevent inhalation of particulate matter.</td>
</tr>
<tr>
<td>Replace HME 24 hourly or more frequently if contaminated by secretions.</td>
<td>To maintain effectiveness and reduce infection risk.</td>
</tr>
<tr>
<td>For patients with thick / dry secretions, ensure 4-6 hourly prescription of saline nebulisers.</td>
<td>To loosen and thin secretions, to prevent atelectasis and sputum consolidation.</td>
</tr>
<tr>
<td>Review need daily</td>
<td>To highlight problem and introduce early intervention where required.</td>
</tr>
<tr>
<td>In patients with very difficult to clear secretions, use nebulisers and mucolytics as indicated:</td>
<td>To improve mobility of secretions, loosen secretions, to prevent atelectasis and sputum thickening and improve expiratory flow.</td>
</tr>
<tr>
<td>• Mucokinetics (Hypertonic Saline >2.7%)</td>
<td></td>
</tr>
<tr>
<td>• Mucolytics (acetylcysteine, DNA-ase)</td>
<td></td>
</tr>
<tr>
<td>• Bronchodilators</td>
<td></td>
</tr>
<tr>
<td>• Oral carbocysteine</td>
<td></td>
</tr>
<tr>
<td>Ensure adequate systemic hydration via oral, enteral or parenteral route</td>
<td>To prevent dehydration and decrease thickening of secretions</td>
</tr>
</tbody>
</table>
Types of Humidification

Listed below are the types of humidification available within South Tees Hospitals FT.

1. Active Heated Humidification

 Fisher & Paykel™ MR 880 - Aims to provide optimal humidity for invasive ventilation, noninvasive ventilation, Humidified High Flow Oxygen Therapy

 These devices increase the heat and water vapour of inspired gas closer to body temperature. In tracheostomy patients, the ideal humidifier temperature is 37 degrees (where close to 100% relative humidity is achieved) but this is often only achieved in sealed ventilatory circuits i.e. mechanically ventilated patients.

2. Cold Water Humidification

These devices bubble gas through cold water at ambient temperatures and thus deliver only 50% relative humidity. For effective humidification, wide bore/“elephant” tubing must be utilised. Please note “bubble through” humidifiers e.g. Respiflo with green oxygen tubing DO NOT provide adequate humidification for tracheostomy patients and should not be used.
3. **Heat and Moisture Exchanger (HME)**

These products contain a condenser element to conserve heat and moisture on expiration. They can be placed directly on the tracheostomy e.g. Portex thermovent or in a breathing circuit e.g. flexicare HME. They need to be regular checked for secretions and damage and must be changed every 24 hours. Some can be used to deliver oxygen.

4. **Nebulisers**

These convert a liquid (saline, bronchodilators etc) into a supersaturated aerosol which penetrate the lung and moisten the airway. They can be used in ventilated and self ventilating patients and a flow rate of 6-8 lpm from a gas source (usually oxygen) is required to drive the nebuliser. The nebuliser must be delivered to the tracheostomy via an appropriate tracheostomy mask (as shown) or via a T-piece in the ventilator circuit on the inspiratory limb.

5. **Bibs**

These are largely used for long-term tracheostomy patients and laryngectomy patients. They contain a foam layer which absorbs moisture from expired gases, similar to an HME, but are more conspicuous and less bulky and thus are better tolerated.
Other methods of improving secretion management

Mobilisation of patients (regular position change, sitting upright, transferring to a chair, mobilising with assistance or independently) will aid in secretion movement and clearance and should be considered alongside humidification with all tracheostomy patients. Safety precautions should always be undertaken to ensure stability of the tracheostomy tube, particularly in mechanically ventilated patients and recent tracheal surgery.

Instilled Saline: patients with thick, tenacious secretions that cannot be removed with adequate humidification, nebulisation and suction, instillation of 2-5 mls of 0.9% saline may be beneficial to prevent airway occlusion and stimulate a cough. However, it is stressed that this should not be done routinely and should only be undertaken by those experienced in management of tracheostomy patients.

II. Suctioning

Suctioning the airway is an essential part of routine care of a tracheostomy. The health of the lower respiratory tract is usually maintained by a mucus blanket which is transported up to the larynx by the ciliated mucosa of the trachea. The mucus blanket is disturbed following a tracheostomy for several reasons:

- The loss of normal humidification from the nasal airway
- The post-surgical inflammation produces a more tenacious mucus blanket
- The presence of the tracheostomy tube paralyses the cilia in contact with it
- The loss of a normal cough mechanism

This usually results in the tracheal mucus collecting at the lower end of the tracheostomy tube. Although some patients may be able to project the mucus through the tube by forced expirations/coughing, it will often need removal by suctioning.

Patient assessment

Suctioning is not a benign process and may cause:

- Hypoxia
- Cardiac arrhythmias
- Trauma
- Atelectasis
- Infection

It is therefore essential for the practitioner to assess whether the patient requires suctioning. Indications that the patient may require suctioning include:
• Noisy respirations
• Palpable fremitus
• Increased respiratory rate
• Restlessness
• Reduced oxygen saturation levels/ deteriorating paO2 on ABG.
• Increased or ineffective coughing
• Increased use of accessory muscles
• Patient request
• Later signs may include cardiovascular instability

Sedated or ventilated patients may have deep secretions which may not be immediately obvious. These secretions may need to be mobilised by physiotherapy and require additional humidification before suctioning is effective.

With an awake, co-operative patient, it will often be possible to encourage them to cough up the secretions, thereby reducing the need for excessive suction.

Types of Tracheal Suctioning

Passing a suction catheter to the tip of the tracheostomy tube can be considered ‘shallow’ suctioning. This is often all that is required if the patient has reasonably loose secretions which can be coughed towards the end of the tube. Passing a suction catheter any further than this can be considered as ‘deep’ suctioning and may be required if more shallow suctioning does not clear the secretions adequately.

In patients requiring a tracheostomy for ventilator weaning ‘deep’ suction past the end of the tracheostomy tube may be necessary in order to effectively clear secretions. This deeper suction however can paralyse the cilia, aggravate the issue of retained secretions and cause possible trauma. In order to minimise this, patients who are able to cough secretions into the tracheostomy tube, should be encouraged to do this and shallow suction should only be performed (to the end of the tracheostomy tube). In some long-term tracheostomy patients there may indeed be specific instructions to only suction to a certain catheter depth in order to minimise permanent damage.

Suctioning systems can be ‘open’ or ‘closed’. Open suction involves using single-use catheters inserted via the open end of the tracheostomy tube, whilst closed suction systems allow the same catheter to be used multiple times. Closed systems are especially useful in the critical care setting where repeated disconnection of the circuit could be detrimental (e.g. in patients with high FiO2 requirements and high ventilator pressures) or in patients with copious secretions.

Closed suction systems should be cleaned following use with sterile saline to reduce risk of occluding the catheter and also permit more accurate estimation of secretion volume. The systems should be changed every 72 hours, unless contraindicated by the patient’s clinical condition. Although the closed systems have several clinical advantages, they do add a degree of weight to the breathing circuit and a risk of getting caught accidently, which may lead to inadvertent disconnection or tube displacement.
Suction catheter selection

Tracheal damage and hypoxia during tracheal suction can be minimised by using the appropriate sized suction catheter. If the catheter is too large the suction it creates can cause damage and may also partially occlude the tracheal tube leading to hypoxaemia. It has been recommended that the diameter of the catheter should be no more than half the internal diameter of the tracheal tube. If the catheter is too small however it will be inadequate to remove secretions.

A guide to choosing the correct size of catheter was proposed by Odell and others (1993):

\[(\text{Size of endotracheal or tracheostomy tube} - 2) \times 2 = \text{Correct French gauge}\]

The table below illustrates this.

<table>
<thead>
<tr>
<th>Inner diameter of tracheostomy tube (mm)</th>
<th>Suction catheter size (French Gauge or mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FG (mm)</td>
</tr>
<tr>
<td>10mm</td>
<td>14 (4.5)</td>
</tr>
<tr>
<td>9mm</td>
<td>12 (4.0)</td>
</tr>
<tr>
<td>8mm</td>
<td>12 (4.0)</td>
</tr>
<tr>
<td>7mm</td>
<td>12* (4.0)</td>
</tr>
<tr>
<td>6mm</td>
<td>10 (3.3)</td>
</tr>
<tr>
<td>5mm</td>
<td>8 (2.6)</td>
</tr>
</tbody>
</table>

* It is more appropriate to use a size 12 catheter as, although it is slightly larger than \(\frac{1}{2}\) diameter, it is more effective for secretion removal.
The frequency of suctioning

There is no clear consensus on how frequently a patient should receive suction and will depend upon the individual. Attempting tracheal suction at least once per 8 hours strikes a reasonable practical balance and will ensure that the tube remains patent. Failure to pass a suction catheter is a ‘Red Flag’ warning that the tube may be blocked or displaced and should be promptly assessed by an appropriately trained individual.

The pressures for suctioning

Choosing the correct pressure is a balance of effectiveness of clearing secretions against limiting the potential for damage, either by directly traumatising the tissues or by aspirating oxygen from the trachea and contributing to hypoxia. Pressures used effectively in the literature range from as little as -80 mmHg to -300 mmHg. Most would agree that a pressure of no greater than -150 mmHg (-20kPa) is appropriate for most patients.

The table below summarises key actions related to suctioning and their rationales (adapted from NPSA expert working group)

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the procedure to the patient</td>
<td>Relieve patient anxieties</td>
</tr>
<tr>
<td>Consider analgesia prior to or following suctioning</td>
<td>Suctioning can be a painful procedure</td>
</tr>
<tr>
<td>Switch suction unit on and check that the suction pressure on circuit occlusion does not exceed -150 mm Hg or 20kPa pressure</td>
<td>To ensure the machine is working correctly. Too great a suction pressure can cause trauma, hypoxaemia and atelectasis</td>
</tr>
<tr>
<td>Wash hands, put on gloves, apron and goggles</td>
<td>Reduce the risk of cross infection</td>
</tr>
<tr>
<td>Ensure that an appropriate non-fenestrated inner tube is in place</td>
<td>Larger fenestrations allow the suction catheter to pass through causing trauma to tracheal wall or giving the false impression that the catheter will not pass</td>
</tr>
<tr>
<td>Consider pre-oxygenation if receiving oxygen or ventilated</td>
<td>To prevent hypoxaemia</td>
</tr>
<tr>
<td>Remove tracheostomy devices prior to open suctioning</td>
<td>To allow access for sterile suction catheter tip</td>
</tr>
<tr>
<td>Connect suction catheter keeping catheter tip covered (sterile)</td>
<td>To reduce the risk of transferring infection from the hands to the suction tubing.</td>
</tr>
<tr>
<td>Place top ‘double’ glove on dominant hand</td>
<td>To aide removal and replacement of fresh gloves per each suction episode</td>
</tr>
<tr>
<td>Do not apply suction whilst introducing the catheter, or push against resistance at any time</td>
<td>Suctioning while introducing the catheter causes mucosal irritation, damage & hypoxia</td>
</tr>
<tr>
<td>Action</td>
<td>Rationale</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Occlude suction port with gloved thumb and suction on removal of suction catheter (no need to rotate on removal as catheters have circumferential holes)</td>
<td>Prolonged suctioning can result in hypoxia and trauma</td>
</tr>
<tr>
<td>Period of suction should not exceed 10 seconds</td>
<td>To reduce risk of mucosal damage and hypoxaemia</td>
</tr>
<tr>
<td>Suctioning should be continuous not intermittent</td>
<td>Intermittent suctioning does not reduce trauma and is less effective</td>
</tr>
<tr>
<td>Observe the patient throughout the procedure to ensure their general condition is not affected.</td>
<td>Tracheal suction may cause vagal stimulation leading to bradycardia, hypoxia and may stimulate bronchospasm</td>
</tr>
<tr>
<td>For patients requiring oxygen therapy, reattach O₂ within 10 seconds.</td>
<td>To limit hypoxia</td>
</tr>
<tr>
<td>Remove the glove from the dominant hand by inverting it over the used catheter & dispose clinical waste bag</td>
<td>To minimise the risk of infection</td>
</tr>
<tr>
<td>Assess the patient's respiratory rate, skin colour and/or oxygen saturation to ensure they have not been compromised by the procedure and determine if they need further suction</td>
<td>Suction should be performed only when needed and not as part of a routine, so that damage to the trachea is avoided</td>
</tr>
<tr>
<td>It is recommended that no more than 3 episodes of suctioning are carried out in succession</td>
<td>To limit side effects and maximise recovery period</td>
</tr>
<tr>
<td>If O₂ delivery was increased, review for return to previous level.</td>
<td>To prevent unnecessary oxygen delivery</td>
</tr>
<tr>
<td>Flush through the connection tubing with the clean water. Empty water receptacle and ensure this is ready for further use. Wash hands.</td>
<td>To minimise the risk of infection</td>
</tr>
<tr>
<td>If the patient needs further suction, repeat the above actions using new glove & a new catheter</td>
<td></td>
</tr>
</tbody>
</table>

Difficulties in suctioning tenacious mucus may be due to inadequate humidification. Try a more effective humidifier and consider the use of nebulizer, mucolytics and concurrent physiotherapy. Saline instillation may be useful in some situations such as deep bronchial suction and bronchial lavage.
III. Tracheostomy Inner Tube Cleaning

The aim of cleaning the inner tube is to remove secretions thereby reducing the risk of obstruction and also the risk of infection. Secretions can adhere to the internal lumen of a tracheostomy tube and severely reduce the inner lumen diameter over time. This can potentially increase the work of breathing and/or obstruct the patient’s airway.

The inner cannula should be removed and inspected at least every four hours. This may need to be performed more frequently if the patient has excessive secretions or shows signs of respiratory distress such as:

- Sudden increase in respiratory rate
- Fall in oxygen saturations
- Audible secretions in the tracheostomy tube
- Stridor
- Increased work of breathing/ use of accessory muscles

For those patients undergoing mechanical ventilation, it may not be safe to repeatedly disconnect the ventilator circuit and change the inner tube routinely. Cleaning or changing an inner tube should always represent the best balance of risks to the patient. If an inner tube is not changed, then it should be clearly documented and communicated, along with the rationale (National Tracheostomy Safety Project).

Some makes of tracheostomy tube (Cook™) have disposable inner cannula and when visibly contaminated these should be thrown away rather than cleaned. Most of the other makes the inner cannulas are re-usable after thorough cleaning following the steps below. The procedure for cleaning of the inner cannula has been reviewed and approved by the Trust Infection and Prevention Control team.

Equipment required

- Clean, disposable gloves, apron and goggles
- Spare clean and dry replacement inner cannula ready for use
- Tracheostomy cleaning swab (Kapitec trachi-swab™)
- Dressing pack
- Sterile water (bottle, sachets)
- Self-seal bag to hold the clean and dry spare inner tube
<table>
<thead>
<tr>
<th>Procedure / Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain and discuss procedure with the patient as appropriate</td>
<td>To relieve patient anxieties and gain patient consent and co-operation.</td>
</tr>
<tr>
<td>Clean your hands immediately prior to donning, gloves, goggles, and apron</td>
<td>To reduce the risk of cross infection</td>
</tr>
<tr>
<td>Perform tracheal suction if necessary</td>
<td>To ensure airway is clear prior to procedure commencing</td>
</tr>
<tr>
<td>With one hand stabilise the outside of the tracheostomy tube as per the manufacturer’s instructions. This may necessitate firm removal of inner cannula whilst anchoring the tracheostomy tube side flange in a friction locked device, or rotation of the inner cannula to release it in preparation for removal. With the other hand remove the inner cannula in an outward and downward direction.</td>
<td>To aid easy removal of the tube and cause minimal movement of the tube on inner cannula removal</td>
</tr>
<tr>
<td>If the inner tube is clean and clear of secretions, reinsert using an upward and forward movement and secure the inner cannula as per the manufacturer’s instructions.</td>
<td>Discomfort and trauma are reduced if the inner tube is reinserted following the contour of the outer tracheostomy tube.</td>
</tr>
<tr>
<td>If there is difficulty in removing the inner tube call for help from an appropriately trained healthcare professional.</td>
<td>Dry tenacious secretions or granulation may prevent the inner tube from being removed which requires prompt attention</td>
</tr>
<tr>
<td>If inner tube requires cleaning, replace with clean/spare inner cannula whilst cleaning is taking place</td>
<td>The tracheostomy tube should always have an inner cannula in place to prevent tube blockage.</td>
</tr>
<tr>
<td>If the inner tube is fully or partially blocked with secretions, immerse in sterile water in the disposable bowl provided and if necessary use a tracheostomy cleaning swab to loosen and remove any secretions</td>
<td>To remove debris that may block the tube as this may become a source of infection. Cleaning devices should be used with caution and care not to cause abrasion to inner surface of inner cannula.</td>
</tr>
<tr>
<td>If tube is coated with dried-on secretions, it may need to be disposed of and a replacement cannula placed at bedside</td>
<td>Excessive cleaning can damage the cannula and they should not be left to soak, as it is an infection risk.</td>
</tr>
<tr>
<td>When clean, still holding it over the bowl rinse the inner cannula through with sterile water from the bottle</td>
<td>To remove secretions and reduce infection risk</td>
</tr>
<tr>
<td>Shake excess water off inner cannula, dry with a clean swab and place in the self seal bag</td>
<td>To ensure a clean and dry inner cannula is available for use.</td>
</tr>
</tbody>
</table>
IV. Stoma Care

The management of a tracheostomy stoma depends to some degree on the type of surgical procedure used to create the tracheostomy tract. Traditionally tracheostomy was created through a linear incision in the front of the neck and commonly leads to a larger surface wound compared with percutaneous procedures. The stoma associated with a tracheostomy or laryngectomy can be considered as a full thickness, open wound, but one that is complicated by the moisture and mucus associated with respiratory secretions. When we add a large foreign body which slides about every time the patient moves, the potential for stoma problems is evident.

Secretions may ooze out of the surgical excision and stoma site which can result in wetness and cause irritation of the skin and can lead to skin maceration and excoriation. This moist environment may also act as a medium for bacterial growth and can prevent the stoma site from healing. The aim of stoma care is therefore to keep the area clean and dry, reducing the risk of skin irritation and infection.

Various types of dressing are available for the stoma. Dressings placed at the tracheostomy site should always be pre-cut by the manufacturers to avoid loose fibres from a cut dressing edge entering into the airway. Thicker dressings will absorb more secretions (e.g. Lyofoam™ Allevyn™) than some of the thinner, less obtrusive varieties available (e.g. Metalline™).

V. Cuff Pressure

These guidelines are suitable for all critical care patients with cuffed endotracheal or tracheostomy tubes in place.

Background

High intra-tracheal cuff pressures are common and may predispose patients to tracheal necrosis and stenosis. Endotracheal and tracheostomy tubes are made with high volume, low-pressure softer cuffs. This should reduce, but not completely eliminate the risk of pressure trauma. These must only be inflated to the minimal desired occlusion volume. Over inflation will cause short and long term consequences to the mucosal wall.

When an inflated cuff is used air should gradually be inserted at 0.2 - 0.5 ml increments with a 10 ml syringe into the endotracheal / tracheostomy tube cuff. Apply a stethoscope to just below the thyroid cartilage and listen for air leaks. When no air leak is heard for greater accuracy withdraw 0.5 - 1.0 ml of air until an air leak is heard and then gradually re-inflate until no air leak is audible.

It is recommended that cuff pressures are measured using a hand pressure manometer. This will measure the pressure exerted by the cuff on the tracheal wall.

The Hi – Lo Hand Pressure Gauge should only be used with tracheal tubes with high volume low pressure cuffs. Before use check the pressure gauge by tightening the screw on the hand pressure gauge, occlude the connecting piece with a finger and inflate the balloon to 120cm H₂O. The valve must be constant for 2-3 seconds.
The Minimal Occlusion Volume (MOV) is the smallest volume of air in the tracheal tube cuff to abolish an air leak on inspiration.

Each shift or each time the cuff is re-inflated the cuff pressure should be checked using a hand pressure gauge following the steps below:

- Explain to the patient your intention to measure the cuff pressure.
- Wash your hands and apply a clean pair of gloves.
- All secretions from the back of the patients’ mouth should be cleared under direct vision with a soft suction catheter to avoid aspiration.
- Tighten the screw on the hand pressure gauge
- Connect the Hand Pressure Gauge to the inflation line with a three way tap attached.
- Connect the three way tap to the cuff on the endotracheal or tracheostomy tube
- Inflate the cuff by means of an air filled syringe attached to the three way tap in increments of 0.2 - 0.5 ml
- Close the tap to the syringe
- Note the pressure indicated on the gauge.
- The cuff inflation pressures should not exceed 25 mmHg in the expiratory phase and should be maintained between 15 and 25 cm of H20.
- If cuff pressures are equal to the recommended level and an air leak persists, senior medical advice should be sought prior to inserting more air in the cuff.
- Document both the volume of air inserted and the highest cuff pressure on the critical care chart (the measured cuff pressure will vary during the respiratory cycle).

When an inflated cuff is in-situ and an audible leak heard air should gradually be inserted at 0.2 - 0.5 ml increments with a 10 ml syringe into the endotracheal / tracheostomy tube cuff. Apply a stethoscope to just below the thyroid cartilage and listen for air leaks. When no air leak is heard for greater accuracy withdraw 0.5 - 1.0 ml of air until an air leak is heard and then gradually re-inflate until no air leak is audible.

Cuff pressures should be measured following significant changes or procedures, such as re-intubation, tracheostomy, intra or inter hospital transfer, turning supine or prone. The routine checking of tracheal cuff pressures for patients with known airway difficulties should be discussed with senior medical staff prior to commencement. Examples are difficult intubations, patients with head or neck trauma or surgery and facial burns. The manometer should be kept for sole use in individual bed areas. The external parts of the manometer should be cleaned before use with a multi-purpose pre-soaked surface wipe or soapy water.
Clinical Guidelines for Tracheostomy Care

Measure tracheal cuff pressure

- **Cuff pressure below 20 cm/H₂O**
 - No air leak
 - No change

- **Cuff pressure above 20 cm/H₂O**
 - No air leak
 - Remove air in increments of 0.2-0.5ml.
 - Reduce pressure as near to 20cm/H₂O as possible with no air leak

- **Cuff pressure above 20-35 cm/H₂O**
 - With air leak
 - Increase in 0.2-0.5ml increments to a maximum pressure of 35 cm/H₂O
 - Use minimum pressure to prevent air leak

- **Cuff pressure above 35 cm/H₂O**
 - With air leak
 - Deflate cuff completely ensuring tracheal tube is held securely.
 - Refer to guidelines for cuff inflation
 - If leak still exists
 - Inform senior clinician

Measuring and managing cuff pressure
VI. Emergency Equipment

The minimum emergency equipment to care for a patient with a tracheostomy should be available at all times by the patient bedside as well as when the patient is not on the ward, for example if patient is transferred to radiology for investigation or procedure.

The emergency equipment comprises the emergency tracheostomy box (see chapter 5 for contents of emergency box), availability of oxygen port (wall or portable oxygen), oxygen delivery system (self-inflated Ambu bag or Mapleson C / Water’s circuit with appropriate mask), suction apparatus and suction catheters.

As part of the emergency management of a patient with tracheostomy, the bedside documentation (chapter 5) and emergency management algorithms (chapter 10) should be kept in the area where the patient is.
Changing of tracheostomy tubes

The decision to electively change a tracheostomy tube should be multi-disciplinary. The first elective change should only be performed or supervised by a suitably qualified member of the medical team.

Several important aspects must firstly be reviewed i.e. the reasons for the formation of the patient's tracheostomy and when and how the tracheostomy was formed.

Indications to change a tracheostomy tube include:

- The tube has been in situ for the maximum recommended duration, 30 days for double lumen tubes (European Directive 1993) and 7-10 days for single lumen tubes (elective indication)

- To facilitate weaning by inserting a smaller, non-cuffed or fenestrated tube (elective indication)

- The patient needs a general anaesthetic or has deteriorated and requires a cuffed tube for mechanical ventilation (elective/urgent indication)

- To replace a tracheostomy tube that is showing that is either displaced or showing difficult access to suctioning due to build-up of thick and sticky secretions or clots in the outer tube (urgent/emergency indication)

It should be noted that a newly formed tracheostomy will close more quickly, particularly within the first 48 hours. Ideally tubes should not be changed before 7-10 days of the tracheostomy formation although if necessary due to difficulties with position or suctioning it can be considered 3-5 days post insertion.

Extreme caution should also be taken where the patient has an obstructed upper airway, in those patients with a large neck, those requiring high levels of ventilator support and patients with tumours surrounding the tracheostomy site or those with significant surrounding granulation.

If the change of the tracheostomy tube is urgent or an emergency please ensure adequate facilities for difficult airway are in place as well as adequate personnel trained for advanced airway management, that is a senior intensivist or anaesthetist, senior ENT/Maxillo-facial surgeon and competent trained airway management assistant. In an emergency please refer to the algorithms of management of breathing difficulties for a patient with a tracheostomy and/or laryngectomy.

Contra-indications to an elective tube change may include:

- An unstable condition
- Requiring high levels of ventilator support
- Undergoing radiotherapy to the neck region or has completed a course within the last two weeks
- In palliative patients where quality of life will not be improved by a tube change
- If the patient refuses
Equipment required for elective tracheostomy tube change

The basic equipment required is listed below. Depending on the patient condition, tracheostomy type and on the indication of tracheostomy (i.e., fully-ventilated patient) additional equipment and trained staff maybe needed

- Two tracheostomy tubes of appropriate make, one same size and one size smaller
- Tracheostomy tube tape and possibly tracheostomy tube holder
- Dressing Pack
- Normal saline or sterile water to clean stoma
- 10 ml syringe for cuff deflation/ inflation (if cuffed tracheostomy)
- Sterile gloves and protective eye wear
- Water soluble lubricating gel
- Forceps and scissors or stich cutters (if sutured tracheostomy)
- Suction equipment and suction catheters
- An exchange device, guidewire, pre-cut suction catheter, Aintree catheter /Bougie
- Pre-cut keyhole tracheostomy dressing – uncut gauze swabs are not recommended
- Pen torch
- Cuff pressure manometer to check pressure if cuffed tracheostomy tube used
- Stethoscope
- Oxygen and oxygen delivery device
- Continuous oxygen saturation monitoring
- Capnography
- Fibreoptic scope and tracheostomy dilators available nearby (to be used only by trained staff)
- Resuscitation equipment including re-breath bag
- Access to intubation equipment
<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify need for tracheostomy tube change and clarify type of tube to be inserted</td>
<td>To ensure tube change is necessary and the correct tube type is selected for current and ongoing patient care needs</td>
</tr>
<tr>
<td>Patient preparation may include ensuring Nil by mouth for 4 hours and/or aspirate nasogastric tube</td>
<td>To limit the risk of aspiration during tube change procedure</td>
</tr>
<tr>
<td>Explain the procedure to the patient and obtain verbal consent if appropriate</td>
<td>To ensure the patient understands the procedure</td>
</tr>
<tr>
<td>Ensure appropriate staff and equipment are available</td>
<td>To deal appropriately with additional measures to secure an airway.</td>
</tr>
<tr>
<td>Set up bedside suction and oxygen equipment</td>
<td>To ensure oxygen and suction are available (when needed)</td>
</tr>
<tr>
<td>Prepare new tube (+ inflate and check cuff), lubricate outer tube surface (and cuff), insert introducer and attach tapes</td>
<td>To ensure new tube has no faults and is prepared for insertion and application.</td>
</tr>
<tr>
<td>Remove any obstructing clothing or equipment</td>
<td>To ensure neck area is accessible for tube change</td>
</tr>
<tr>
<td>Position patient for procedure by placing a roll under the patient’s shoulders, extending the stable neck. Patient may be placed lying down or sitting upright depending on individual patient assessment.</td>
<td>To bring the trachea closer to the skin and to stretch stoma opening in order to aide tube insertion</td>
</tr>
<tr>
<td>If the tracheostomy tube is sutured in-situ, remove all sutures. Skin sutures may be considered for removal if appropriate.</td>
<td>To allow tube removal and to prevent sutures becoming embedded or an infection risk.</td>
</tr>
<tr>
<td>Deflate cuff (if present) simultaneously suctioning</td>
<td>To enable existing tube to be removed and for secretions to be cleared.</td>
</tr>
<tr>
<td>Untie tapes and remove dressing whilst tube is held firmly in place</td>
<td>To remove old dressings and tapes.</td>
</tr>
<tr>
<td>Remove existing tube with a firm out and downwards movement as patient breathes out</td>
<td>To reduce patient coughing.</td>
</tr>
<tr>
<td>Observe stoma site and tracheal opening.</td>
<td>To identify signs of infection, granulation tissue and/or bleeding.</td>
</tr>
<tr>
<td>Holding the introducer in place, insert new tube into stoma</td>
<td>To pass tube along contour of tract.</td>
</tr>
<tr>
<td>Remove introducer</td>
<td>To allow patient to breathe and to allow confirmation of correct tube position</td>
</tr>
</tbody>
</table>
If correct tube position not confirmed

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Remove tube and attempt second re-insertion.</td>
<td>To safely manage the tracheostomy tube insertion</td>
</tr>
<tr>
<td>• Following a failed third attempt, a smaller tube may be considered.</td>
<td></td>
</tr>
<tr>
<td>• Additional support should be sought for further management or advice.</td>
<td></td>
</tr>
</tbody>
</table>

Post procedure

<table>
<thead>
<tr>
<th>Action</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispose of equipment in clinical waste</td>
<td>To reduce risk of infection</td>
</tr>
<tr>
<td>Ensure bedside equipment is re-stocked with appropriate tube selection</td>
<td>To ensure emergency equipment is replaced or exchanged for new tube.</td>
</tr>
</tbody>
</table>

Documentation

Documentation of the procedure in medical and nursing notes should include:

1. Size and type of tube
2. Difficulties experienced with tube change
3. Comments on stoma
4. Patients response to tube change
5. Expected date of next tube change
Assessment and management for decannulation

The act of capping of a tracheostomy tube not only restores phonation but also restores subglottal pressure and improves taste, swallow, cough and the Valsalva manoeuver.

Additionally, the quantity of tracheal secretions tends to diminish after the tracheostomy tube...

Tracheostomy Decannulation Procedure

Tracheostomy removal takes place in a variety of clinical environments and can be performed by various medical and health professional who are trained and assessed as competent at carrying out the procedure.

The best time to consider decannulation is mornings following a physiotherapy session where secretion clearance can be optimized; the patient is rested from sleeping and can be monitored throughout the day.

Failed decannulations occur for a variety of reasons:

- Unable to clear secretions
- Increased work of breathing
- Structural abnormalities
- Stenosis
- Tracheomalacia

Prior to considering decannulation

- Resolution of original need for tracheostomy insertion
- Minimal secretions – able to clear independently
- Minimal oxygenation requirements
- Able to maintain own airway
- Appropriate conciousness
- Good cough (PCF > 160 providing physiotherapy services involved)
- Present gag reflex
- Optimal nutrition
- Deflated cuff 24 hours
- Speaking valve use
- Occlusion valve tolerated for up to 4 hours (if used)
- CVS stability
- MDT opinions
- Check medical documentation from when tracheostomy was inserted to determine if it was problematic to decide who is best equipped to decannulate the patient
- Ensure availability of staff trained in advanced airway management (critical care or anaesthetist) for possible complications
Equipment

- Dressing pack
- Gauze
- Appropriate dressing
- Sterile normal saline
- Gloves, apron and protective eye wear
- Appropriately sized tracheostomy tube and one a size smaller (available not opened)
- Facemask or nasal specs
- Microbiological swab
- Tracheal dilators
- Functioning suction unit and appropriate sized suction catheters
- Stethoscope
- Resuscitation equipment

Procedure

- Two person technique, clear understanding of roles
- Check emergency equipment
- Explain procedure to patient and gain patient consent where possible
- Position patient in semi-recumbent position
- When required place supplemental oxygen over nose and mouth
- Remove old dressing and tapes and support the tube
- Suction patient
- Remove tube on expiration
- Observe site, swab if required and clean stoma
- Check patient is comfortable
- Use a portion of gauze folded in four and place over stoma
- Apply an appropriate dressing over the gauze over the stoma site
- Advise patient to provide pressure to the stoma site when coughing and talking in the initial stages
- Document the procedure in the case notes and make a final check of the patient

Monitoring of the patient

Monitoring of the patient to assess for possible deterioration needs to be increased post decannulation, initially 15 minutes then hourly and increased to 4 hourly as stability allows. Signs and symptoms that could indicate deterioration are:

- Breathlessness
- Laboured breathing
- Noisy respiration
- Stridor
- Increased respiratory rate
- Increased heart rate
- Excess use of accessory muscles
- Change in respiration pattern
- Change in respiration depth
- Agitation
- Oxygen desaturation

Management of the wound needs to be continued by ward staff until it has completely healed. Close observations should be noted for any signs of infection, excessive scar tissues or failure to heal.

There is a checklist and monitoring document to be used for assessment of decannulation and post procedure review (see Chapter 10).
4. MINIMUM STANDARDS FOR TRACHEOSTOMY CARE AND SAFETY ON THE CLINICAL AREAS

One of the main recommendations to come from the NCEPOD (*On the Right Track*) and from looking at our local patient safety incidents, is to cohort patients together to concentrate staff, skills, equipment and expertise. This should make equipping and training locations that will be designated to care for tracheostomy patients easier.

This approach means that the majority of clinical locations will lose expertise on looking after neck breathing patients which may restrict bed movements in an acute hospital. However, the risks of caring for this cohort in clinical areas without the necessary equipment, training and experience places the patient at an increased risk of airway complications, morbidity and mortality.

One of the key recurring themes in the published critical incident reviews was a lack of equipment and training by staff meaning that routine care was not provided, warning signs and red flags were missed and that emergencies were not managed effectively. Concentrating training, equipment and expertise would be expected to reduce these incidents.

Dedicated tracheostomy teams and tracheostomy ward rounds is another well published approach to reducing tracheostomy-related critical incidents.

Tracheostomy Care Training: Staff Competencies

The designated areas to have after patients with tracheostomies should have at least two members of staff per shift fully trained and competently assessed for tracheostomy care.

The education, training and competencies for tracheostomy care are discussed in another section of this clinical guideline.

At South Tees Hospitals the areas that have staff able to look after patients with tracheostomies are the critical care areas, general critical care, cardiothoracic critical care, spinal high dependency unit, neurosurgical high dependency unit, respiratory wards at both hospitals, the Ear Nose Throat and maxillo-facial trauma wards and the rehabilitation ward at the spinal cord injury unit.

With the arrival of critical care outreach, we anticipate further training to facilitate other clinical areas to achieve competencies to be able to look after tracheostomised patients. The critical care outreach team will also be able to facilitate the follow up and care of the patients with tracheostomies.
Equipment

Ward equipment for a tracheostomy patient

- A non-rebreath oxygen circuit and adult bag-valve-mask device with reservoir and tubing (on cardiac arrest trolley)
- Catheter mount (on cardiac arrest trolley)
- Paediatric face mask (on cardiac arrest trolley)
- Sputum trap (store cupboard)
- Tracheostomy wedge (store cupboard)
- Selection of appropriate tracheostomy tubes, selection of tracheostomy inner tubes, tracheostomy dressing and tracheostomy ties
- Selection of appropriate suction catheters
- Portable suction

Bedside equipment for a tracheostomy patient

- Access to an oxygen delivery system that should include a tracheostomy mask, humidification system and elephant tubing in working conditions
- Suction apparatus in working conditions, suction tubing and a selection of suction catheters (size 10fg to 14fg) with fingertip control
- Single lumen cuffed tubes for emergency use (one same size as tube in situ, one smaller) as part of the emergency box
- Spare inner tubes. If the inner tubes are not disposable they should be kept cleaned and dried inside the appropriate container (see cleaning of the inner tube)
- Care plan adequately documented
- Bedhead sign completed
- Emergency algorithm
- Dressing pack
- Cleaning solution
- Spare Velcro tracheostomy tape
• Tracheostomy dressings
• Soft brushes for inner tube cleaning
• 10 ml syringes (to inflate/deflate cuff)
• Manometer with the appropriate extension to check the cuff pressure
• Water soluble lubricating gel
• Stitch cutter (if sutures present)
• Saline ampules, nebulizer equipment for tracheostomy mask
• Disposable non-sterile gloves (small/medium/large)
• Disposable sterile gloves (small/medium/large)
• Aprons and goggles for eye protection
• Water to rinse tubing
• Non-sterile receivers
• Sterile gauze
• Yellow clinical waste bag
• Tissues
• Yankauer suction catheter
• Nurse call bell
• Communication aids: the patient may not be able to verbalise
5. RESUSCITATION AND EMERGENCY MANAGEMENT OF THE PATIENT WITH A TRACHEOSTOMY OR LARYNGECTOMY

Emergency Tracheostomy Box

Any clinical area caring for patients with a tracheostomy must have emergency equipment immediately available. Some of the emergency equipment needed should be by the bedside, whilst other emergency equipment should be available on the ward area.

Basic emergency equipment should be stored in a dedicated bag or box that accompanies the patient at all times. In areas where patients are receiving ventilatory support or where the tracheostomy tube is the main airway of the patient, other emergency equipment should be readily available and routinely checked stored in an airway trolley on the ward area. If a patient is transferred to a different location within a hospital then the accompanying staff must ensure that any equipment that may be required in an emergency is available at the destination, and also during the transfer, for example, emergency tracheostomy box and suction equipment. An appropriately trained carer who is competent to use the equipment in an emergency must also accompany them. There are recorded incidents occurring during transfer of patients with tracheostomy, in hospital corridors and remote departments such as X-Ray department, where a blocked or displaced tube could not be managed due to a lack of immediately available equipment.

At South Tees Hospitals all patients outside critical care areas should have an emergency tracheostomy box by the bedside with the following contents:

- Cuffed* tracheostomy tube same size patient discharged with**
- Cuffed* tracheostomy tube one size smaller size patient discharged with**
- Spare inner tube (x1) that fits tracheostomy tube patient discharged with
- Suction catheters size 14, 12, 10 (x1)
- 20ml syringe
- Gloves
- Packet of sterile gauze
- Water soluble lubricant jelly
- Scissors

*Cuffed tube to be used in case of emergency even if patient had non-cuffed on discharged

**If patient discharged with UniPerc variable flange please use equivalent size of Cook or Trachoe Plus for emergency box
Algorithm 1: Breathing difficulties in the patient with tracheostomy and patent upper airway

Management of the tracheostomy patient with breathing difficulties - Patent upper airway

- **Call for airway expert help (Anaesthetic / Critical Care / ENT)**
 - Look, listen & feel at the mouth and tracheostomy
 - A Mapleson C system ("Waters circuit") may help assessment if available
 - Use waveform capnography when available: exhaled carbon dioxide indicates a patent or partially patent airway

Is the patient breathing?

- **No**
 - Call Resuscitation Team
 - CPR if no pulse / signs of life

- **Yes**
 - **Apply high flow oxygen to BOTH the face and the tracheostomy**

Assess tracheostomy patency

- **Can you pass a suction catheter?**
 - **Yes**
 - The tracheostomy tube is patent
 - Perform tracheal suction
 - Consider partial obstruction
 - Ventilate (via tracheostomy) if not breathing
 - Continue ABCDE assessment
 - **No**
 - Deflate the cuff (if present)
 - Look, listen & feel at the mouth and tracheostomy
 - Use waveform capnography or Mapleson C ("Waters circuit")

- **Is the patient stable or improving?**
 - **Yes**
 - Continue ABCDE assessment
 - Support ventilation if hypoxic
 - **No**
 - **REMOVE THE TRACHEOSTOMY TUBE**
 - Look, listen & feel at the mouth and tracheostomy
 - Ensure oxygen re-applied to face and stoma
 - Use waveform capnography or Mapleson C ("Waters circuit") if available

Is the patient breathing?

- **No**
 - Call Resuscitation team
 - CPR if no pulse / signs of life

- **Yes**
 - **Continue ABCDE assessment. Support ventilation if hypoxic**

Primary emergency oxygenation

- Standard ORAL airway manoeuvres
 - Cover the stoma (swabs / hand) and use:
 - Bag-valve-mask
 - Oral or nasal airway adjuncts
 - Supraglottic airway device e.g. LMA

- **Tracheostomy STOMA ventilation**
 - Paediatric face mask applied to stoma
 - LMA applied to stoma

Secondary emergency oxygenation

- Attempt ORAL intubation
 - Prepare for difficult intubation
 - Uncut tube, advanced beyond stoma

- Attempt intubation of STOMA
 - Small tracheostomy tube / 6.0 cuffed ETT
 - Consider Bougie / Anttree catheter / fibreoptic scope/Airway exchange catheter

Adapted from National Tracheostomy Safety Project

TRACHEOSTOMY CARE GROUP STH / June 2016

Critical Care Services

June 2016 Critical Care Services 51
Algorithm 2: Breathing difficulties in the patient with laryngectomy

Emergency Management of the laryngectomy patient with breathing difficulties

Call for airway expert help (Anaesthetics / Critical Care / ENT)
Look, listen & feel at the mouth and laryngectomy stoma
A Mapleson C system ("Waters circuit") may help assessment if available
Use waveform capnography whenever available: exhaled carbon dioxide indicates a patent or partially patent airway

No
Is the patient breathing?

No
Call Resuscitation Team
CPR if no pulse / signs of life

Yes
Apply high flow oxygen to laryngectomy stoma
(use tracheostomy mask or paediatric face mask)
If any doubt whether patient has a laryngectomy, apply oxygen to face also*

Assess laryngectomy stoma patency

No

Most laryngectomy stomas will NOT have a tube in situ

Remove stoma cover (if present)
Remove inner tube (if present)
Some inner tubes need re-inserting to connect to breathing circuits
Do not remove a tracheoesophageal puncture (TEP) prosthesis

Yes

Can you pass a suction catheter?

No
Deflate the cuff (if present)
Look, listen & feel at the laryngectomy stoma or tube
Use waveform capnography or Mapleson C if available

Yes

Is the patient stable or improving?

No

REMOVE THE TUBE FROM THE LARYNGECTOMY STOMA if present
Look, listen & feel at the laryngectomy stoma. Ensure oxygen is re-applied to stoma
Use waveform capnography or Mapleson C if available

Yes

Continue ABCDE assessment

Laryngectomy patients have an end stoma and cannot be oxygenated via the mouth or nose
Applying oxygen to the face and stoma is the default emergency action for all patients with a tracheostomy

Primary emergency oxygenation
Laryngectomy stoma ventilation via either
Paediatric face mask applied to stoma
LMA applied to stoma

Secondary emergency oxygenation
Attempt intubation of laryngectomy stoma
Small tracheostomy tube / 6.0 cuffed ETT
Consider Aintree catheter and fibreoptic scope / Bougie / Airway exchange catheter
Algorithm 3: Advanced airway management of the patient with a tracheostomy tube

Advanced Tracheostomy Algorithm
(For Expert Airway Management Responders)

Indications
- Tracheostomy tube position check
- Emergency airway following failure to secure upper airway in hypoxic patient
- Stable, oxygenated patient with suspected displaced (or completely displaced) tracheostomy tube
- Sedation and Anaesthetic drugs should only be used by experienced responders in appropriate settings

Ensure maximal flow of oxygen to the upper airway at all times
via Face Mask or Breathing Circuit

Train Aintree Catheter (or similar) over Fibre-optic Bronchoscope (FOB)

Insert FOB through tracheostomy tube if present or directly through the stoma
 Consider lidocaine gel or similar if necessary

Advance FOB carefully. Identify tracheal rings and carina
 Advance Aintree Catheter into trachea from over the FOB and withdraw the FOB

Train tracheostomy (or small endobronchial tube) into stoma over the Aintree Catheter
 Use same size or smaller tracheostomy tube

NO - Able to insert tube? **YES**

Attach RapiFit to Aintree Catheter and connect O₂

Check position of Aintree (Capnography or FOB)

Try smaller trachy tube or endotracheal tube

Inflate the tracheostomy tube cuff. Connect to Waters circuit and Oxygen. Check
- Capnography trace
- Bilateral air entry
- Ability to pass suction catheter via tracheostomy
- Position in trachea with FOB when stable

Secure the tracheostomy tube
 Continue ABCDE assessment of patient

Failed definitive airway management at this stage is a dire situation. Options are:
- Get further help as appropriate
- Continue to attempt to oxygenate/ventilate via stoma and upper airway (Face Mask / LMA)
- Advanced upper airway management with FOB, ILMA, Aintree, Advanced Laryngoscopes
- FOB into stoma without Aintree may be more flexible
- Cricothyroidotomy
- New Percutaneous or Surgical Tracheostomy

www.tracheostomy.org.uk
6. POST OPERATIVE CARE OF THE TRACHEOSTOMY AND LARYNGECTOMY PATIENT

ENT/ Maxillo-Facial colleagues to complete
7. **SWALLOWING**

Not all patients with a tracheostomy will present with swallowing difficulties. Swallowing difficulties are more often the result of the patient’s medical condition rather than the tracheostomy tube itself.

The theoretical evidence around the effects of a tracheostomy tube on swallowing is controversial, but suggests that the following may occur in the presence of a tracheostomy tube:

- Reduction of antero-superior movement of the larynx
- Tracheal irritation at rest and during swallowing
- Reduced laryngeal closure
- Compression of the oesophagus by the tracheostomy tube cuff
- Reduced subglottal air pressure
- Reduction or elimination of airflow through the glottis
- Blunting of the reflexive cough
- Non co-ordination of the glottic closure response
- Reduced laryngeal sensitivity
- Disuse atrophy of the laryngeal muscles

A Speech and Language Therapist (SALT) will assess the swallow function of those patients identified as being at risk of dysphagia. This is to reduce the risk of aspiration which may lead to aspiration pneumonia. Aspiration is the leading cause of pneumonia in the intensive care unit and contributes significantly to the overall morbidity and mortality of the critically ill patient (McClave et al 2002). This complication can cause significantly longer hospital stays, thus increasing the cost of care (Carter-Young et al 1990).

Who to refer to the Speech & Language Therapy department for a swallowing assessment?

A referral would be appropriate for tracheostomised patients with:

- Neurological involvement e.g. bulbar involvement
- Head & Neck surgery
- Evidence of aspiration of food/fluid/oral secretions on tracheal suctioning
- Persistent wet or weak voice when cuff is deflated and speaking valve or decannulation cap in place
- Coughing in relation to oral intake
- Oxygen desaturation in conjunction with oral intake
- Patient anxiety or distress during oral intake.
When to refer to the Speech and Language Therapy department for a swallowing assessment?

The following criteria should be considered **before** referring a patient to the Speech and Language Therapy department for a swallowing assessment.

<table>
<thead>
<tr>
<th>Pre-Assessment</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Is the patient sufficiently alert and able to be sat upright? | • This is the optimum position for feeding and digestion.
• The airway is protected and it helps to reduce the risk of aspiration. |
| Is the patient’s oral cavity clean and clear? | • To reduce the risk of associated infection and airway occlusion. |
| Has the patient been trialled with cuff deflation with simultaneous suctioning in conjunction with Trust guidelines? | • To ensure the patient is able to tolerate their secretions prior to proceeding to oral intake
• Secretions can pool and sit on top of the inflated cuff. Suctioning at the time of cuff deflation will minimise the risk of these secretions being aspirated. |
| Can the patient tolerate cuff deflation for the period of the assessment? | • To reduce potential compression of the oesophagus and patient discomfort.
• To enable full bedside assessment of the overt clinical risk of aspiration. Without cuff deflation, assessment findings will be limited. |
| What is the patient’s chest status and oxygen requirement? | • If oxygen requirement is over 35-40% and/or regular suctioning is required, it is likely to be too early for a swallowing assessment. |
| Is regular suctioning required? | • To maximise supraglottic air flow and enable voice quality to be monitored during the swallow assessment (Murray K et al 1998). |
| If cuff deflation is tolerated, is the patient able to tolerate wearing a speaking valve during the assessment? | |

Assessment

When dysphagia is suspected, a referral is accepted from any member of the multidisciplinary team once the above criterion has been considered and it is agreed that the patient is appropriate for a swallowing assessment.

The Speech and Language Therapist will complete a bedside evaluation of swallowing. Regular suctioning to maintain a clear airway should be available throughout the assessment by nursing or physiotherapy staff.
Research does not fully support the use of the modified Evans blue dye test (MEBDT) to identify the presence or absence of aspiration due to its high false negative rate i.e. it does not always detect aspiration when it has actually occurred (O’Neil-Pirozzi TM et al, 2003). It may, however, be helpful as a screening tool and should be combined with other patient risk factors and underlying diagnosis. Please note that this should only be carried out by a dysphagia trained Speech and Language Therapist.

Further assessment information may be obtained through administering a video-fluoroscopy. This enables radiographic visualisation of the swallow.

Management of Dysphagia

The findings of the assessment and resulting recommendations will be discussed with the multi-disciplinary team and documented in the patient’s medical notes to ensure appropriate and effective care for the individual patient.

The Speech and Language Therapist may recommend the following interventions:

- **Diet/ Fluid Modifications**

 The SALT may recommend modified food/ fluid consistencies to optimise swallow safety. This may require liaison with the dietitian.

- **Non-Oral Feeding**

 If the SALT recommends that a patient should be nil by mouth or that they can only begin oral trials/ tasters, then the patient may require an alternative form of feeding to maintain nutrition and hydration. A referral to the dietitian will be made in this instance.

- **Dysphagia Therapy**

 This includes oral motor control and range of motion exercises to heighten sensory input). Swallow manoeuvres which are designed to place specific aspects of pharyngeal swallow physiology under voluntary control will also be considered. Please note, however, that dysphagia therapy may not be appropriate for all patients.
8. COMMUNICATION

Communication is the sharing of experiences, events, ideas and feelings through verbal (sounds, words) and non-verbal (gesture, tone of voice, facial expression) means. In a medical setting, communication is required in order for the patient to give informed consent about their treatment as well as to participate in social interaction, discussion of feelings and counselling.

There are 3 main causes of communication disorder in the critical care setting:

- Organic communication disorders - Stroke, head injury, damage to oral cavity, pharynx or larynx, spinal cord injury, tumours, etc.
- Concomitant communication disorders - Critical care neuropathy, mechanical ventilation, tracheostomy tubes.
- Psychogenic communication disorders - Critical care psychosis or clinical depression.

By providing timely and ongoing assessment and intervention and providing effective communication strategies and/or aids there may be a reduction in negative emotional responses (fear, anxiety, frustration) and an improvement in the psychological well-being of the patient, family and staff (Dikeman and Kazandjian, 2003; Manzano et al, 1993).

The Role of the Speech and Language Therapist

The role and responsibility of the Speech and Language Therapist is to facilitate communication and to ensure equitable communication for all patients. The Speech and Language Therapist will assess the most appropriate way for the patient to communicate. In addition to the methods below, the nurse call bell should be accessible to the patient at all times.

Non-Verbal Communication

- Exaggerated lip movements - This requires the patient to use short but complete sentences and requires adequate oro-motor ability.
- Facial expression and gestures
- Writing
- Coded Eye Blink or Hand Gesture – E.g. blink once for “yes” and twice for “no” or thumbs up for “yes” and down for “no
- Alphabet Board, Picture Board and Phrase Books - These can be individualised for a patient by the Speech and Language Therapist.
Electronic Communication Aids - It is necessary for the Speech and Language Therapist to assess the patient for use of one of these aids, and then, if appropriate, advise the patient, family, carers and staff on its use. Use of these aids requires the patient to develop an adequate level of skill, therefore may not be suitable for short term use.
Verbal Communication (Manipulation of the Tracheostomy Tube for Communication).

Voice production may be achieved in patients with a tracheostomy tube by using one or more of the following:

- **Cuff Deflation** - Deflation of the cuff of the tracheostomy tube will allow air to pass into the upper airway on expiration. Phonation will be achieved as air is directed into the larynx, however the strength of the voice may be weaker as some air will pass out of the open tracheostomy.

- **Fenestrated Tracheostomy Tube** - Use of a fenestrated tracheostomy tube also allows air to pass into the upper airway on expiration, thus producing voice. It is essential to remove a non-fenestrated inner cannula if in-situ. It is important to check that the fenestrations are patent and well aligned in the tracheal lumen.

- **Intermittent Finger Occlusion** - Intermittently occluding the tracheostomy tube with a gloved finger will allow for effective voicing in many patients. To use this technique, the patient should ideally be able to tolerate cuff deflation, but if not must have a fenestrated tracheostomy tube (with fenestrated inner cannula) in place.

- **One Way Speaking Valve** - One-way speaking valves can be used very effectively with tracheostomised and ventilator dependent patients. Use of a one-way speaking valve is dependent upon the patient’s ability to tolerate cuff deflation and susceptibility to fatigue (due to increased resistance to airflow).

![Range of Passy-Muir Speaking Valves](image)

Speaking valves should only be used with non-cuffed tracheostomy tubes or with the tracheostomy cuff (if present) deflated (in accordance with local policy, the deflation of the cuff should be discussed by the multidisciplinary team). If the cuff is inflated the patient's respiration will be compromised (see diagrams below) as the patient will not be able to breathe out. This could lead to a cardiovascular collapse. If using fenestrated cuffed tubes, please ensure the fenestrations are patent and well-aligned in the tracheal lumen.
It is not recommended to leave a speaking valve on a patient with a deflated cuffed tracheostomy tube unless patient is continuously monitored and the speaking valve is only for a short period of time while testing patient phonation.

Before a speaking valve is used continuously the patient should have been assessed and monitored to check that he/she tolerates the speaking valve.

Contraindications for speaking valve use include:

- Inability to tolerate full cuff deflation
- Airway obstruction
- Unstable medical/pulmonary status
- Laryngectomy
- Severe anxiety/cognitive dysfunction
- Anarthria
- Severe tracheal/laryngeal stenosis
- End stage pulmonary disease

The Speech and Language Therapist will be able to provide information and advice on achieving the most appropriate communication system for the individual patient.
9. CARE OF PATIENTS ADMITTED WITH LONG TERM TRACHEOSTOMY

(In progress - IG)
10. TRACHEOSTOMY CARE DOCUMENTATION

Tracheostomy Observation Chart

<table>
<thead>
<tr>
<th>Frequency of observations</th>
<th>Initials</th>
<th>NMC/GMC no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracheostomy type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracheostomy size</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
</tr>
<tr>
<td>01:00</td>
</tr>
<tr>
<td>02:00</td>
</tr>
<tr>
<td>03:00</td>
</tr>
<tr>
<td>04:00</td>
</tr>
<tr>
<td>05:00</td>
</tr>
<tr>
<td>06:00</td>
</tr>
<tr>
<td>07:00</td>
</tr>
</tbody>
</table>

- Inner tube patency
- Inner tube cleaned
- Cuff pressure (write size if # released)
- Suction performed
- O₂ percentage
- SpO₂
- Humidification
- Stoma assessment
- Stoma care
- Dressing change
- Safety equipment
- Nurse’s initials
Tracheostomy Transfer of Care Checklist

<table>
<thead>
<tr>
<th>Type of tube</th>
<th>Reason for tracheostomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuffed</td>
<td>Respiratory support</td>
</tr>
<tr>
<td>Uncuffed</td>
<td>Secretion clearance</td>
</tr>
<tr>
<td>Fenestrated</td>
<td>Maintenance of airway</td>
</tr>
<tr>
<td>Unfenestrated</td>
<td>Other</td>
</tr>
</tbody>
</table>

Tracheostomy performed: [] Date of last change: [] Date of next review: []

Tracheostomy emergency box check list

- Cuffed tracheostomy tube (patients own size)
- Cuffed tracheostomy tube (one size smaller than above)
- Inner tube (x1) to fit tracheostomy tube on discharge
- Size 14, 12 and 10 suction catheters
- 20ml syringe
- Gloves
- Packet of sterile gauze
- Water soluble lubricant jelly
- Scissors

Baseline information

- Humidified O₂ percentage
- Humidified O₂ at time of transfer
- Cuff inflation pressure on discharge if indicated
- Suction requirement
- Size of suction catheter
- Frequency of suctioning
- Saline nebulisers required

Position of patient
- Swallow ability
- Assessment & care of site
- Nil by mouth
- Cuff deflation tolerance

Additional Information:

- Tracheostomy emergency box checked
- Tracheostomy emergency box with patient
- Tracheostomy awareness form with patient
- Tracheostomy observation chart commenced

Contact for advice and support

Critical Care Services:

ICUI/HDU: 52660, 54639, 54898
CCOT bleep: 7000, 7001

Return all tracheostomy safety boxes after use to ICU CC Outreach Office

Tracheostomy Discharge Critical Care Checklist June 2016

Critical Care Services
Tracheostomy Transfer of Care Checklist (FH)

Tracheostomy Transfer of Care Checklist

<table>
<thead>
<tr>
<th>Patient Label</th>
<th>Type of tube</th>
<th>Reason for tracheostomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Cuffed</td>
<td>□ Respiratory support</td>
</tr>
<tr>
<td></td>
<td>□ Uncuffed</td>
<td>□ Secretion clearance</td>
</tr>
<tr>
<td></td>
<td>□ Fenestrated</td>
<td>□ Maintenance of airway</td>
</tr>
<tr>
<td></td>
<td>□ Unfenestrated</td>
<td>□ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tracheostomy performed:</th>
<th>Date of last change:</th>
<th>Date of next review:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tracheostomy emergency box check list

- □ Cuffed tracheostomy tube* (patients own size)
- □ Cuffed tracheostomy tube* (one size smaller than above)
- □ Inner tube (x1) to fit tracheostomy tube on discharge
- □ Size 14, 12 and 10 suction catheters
- □ 20ml syringe
- □ Gloves
- □ Packet of sterile gauze
- □ Water soluble lubricant jelly
- □ Scissors

Baseline information

- Humidified O₂ percentage
- Humidified O₂ at time of transfer
- Cuff inflation pressure on discharge if indicated
- Suction requirement
- Size of suction catheter
- Frequency of suctioning
- Saline nebulisers required

Baseline information

- In case of patient discharged with Portex UniPerc variable flange please use standard Portex,Cook or Tracoé PLUS equivalent size

<table>
<thead>
<tr>
<th>Position of patient</th>
<th>Swallow ability</th>
<th>Assessment & care of site</th>
<th>Nil by mouth</th>
<th>Cuff deflation tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Information:

- □ Tracheostomy emergency box checked
- □ Tracheostomy emergency box with patient
- □ Tracheostomy awareness form filled
- □ Tracheostomy observation chart commenced

Contact for advice and support

- Critical Care Services:
 - CCOT bleep: 784
 - ICU: 64011

- ICU nurse signature: Print name Date Time
- Ward nurse signature: Print name Date Time

Return all tracheostomy safety boxes after use to ICU (FAO Sisters Office)

Tracheostomy Patient Awareness Bed Sign

This patient has a **TRACHEOSTOMY**
There is a potentially patent upper airway (Intubation may be difficult)

- New tracheostomy (this admission)
- Surgical / Percutaneous
- Long term tracheostomy

Tracheostomy Tube size

Tracheostomy Tube changed, please see back of form

- Indicate location and function of any sutures inserted
- Laryngoscopy grade and notes on managing upper airway
- Any problems with this tracheostomy (continue on back of form)

Emergency Call James Cook University Hospital: ICU Emergency bleep 1005 Anaesthetist SpR on call bleep 4958, CCOT bleep 7000
Emergency Call Friarage Hospital: ICU phone 64011, Anaesthetist on call bleep 161, CCOT bleep 784

CARDIAC ARREST CALL 2222

Laryngectomy Patient Awareness Bed Sign

This patient has a **LARYNGECTOMY** and CANNOT be intubated via the mouth

Follow the **LARYNGECTOMY** guideline for breathing difficulties

- Indicate tracheostomy type by clicking the relevant figure
- Percutaneous
- Slit type

Note: There may not be a tracheostomy tube in place. The trachea (wind pipe) ends at the stoma

Emergency Call James Cook University Hospital: ICU Emergency bleep 1005 Anaesthetist SpR on call bleep 4958, CCOT bleep 7000
Emergency Call Friarage Hospital: ICU phone 64011, Anaesthetist on call bleep 161, CCOT bleep 784

CARDIAC ARREST CALL 2222
Tracheostomy Passport

FIRST DRAFT

DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Name</th>
<th>NHS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IN CASE OF ADMISSION TO HOSPITAL PLEASE CONTACT: []

TRACHEOSTOMY HISTORY

<table>
<thead>
<tr>
<th>Reason for Tracheostomy</th>
<th>Procedure and Surgeon</th>
<th>Date of Tracheostomy</th>
<th>Initial Tracheostomy Tube</th>
<th>Airway Difficulties</th>
<th>Sutures</th>
<th>Initial Complications</th>
<th>First Tracheostomy Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURRENT STATUS

<table>
<thead>
<tr>
<th>Type and Size of Tracheostomy Tube</th>
<th>Alternative Tracheostomy Type</th>
<th>Cuff Management</th>
<th>Speaking Valve/Cap Use</th>
<th>Humidification</th>
<th>Oxygen and Target Saturation Oxygen</th>
<th>Respiratory Support</th>
<th>Secretion Management</th>
<th>Tracheostomy Dressing</th>
<th>Eating/Drinking</th>
<th>Tracheostomy Tube Change Log (If applicable, frequency and location)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

TRACHEOSTOMY TUBE CHANGE LOG

<table>
<thead>
<tr>
<th>Date</th>
<th>Tube Size & Type</th>
<th>Staff Initials</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

June 2016

Critical Care Services

Critical Care Services

Tracheostomy Passport

South Tees Hospitals NHS Foundation Trust

Comments, compliments, concerns or complaints

South Tees Hospitals NHS Foundation Trust is concerned about the quality of care you receive and strives to maintain high standards of health care.

However we do appreciate that there may be an occasion where you, or your family, feel dissatisfied with the standard of service you receive. Please do not hesitate to tell us about your concerns as this helps us to learn from your experience and to improve services for future patients.

Patient Advice and Liaison Service (PALS)

This service aims to advise and support patients, families and carers and help sort out problems quickly on your behalf.

This service is available at The James Cook University Hospital and the Friarage Hospital Northallerton, please ask a member of staff for further information.

Authors / department / contact number
Website: www.websiteaddress.co.uk

The James Cook University Hospital
Marton Road, Middlesbrough, TS4 3BW. Tel: 01642 850850

Version 1, Issue Date: May 2011, Revision Date: May 2012
Percutaneous Tracheostomy Consent Form

Responsible Health Professional

- **Title:**

Patient details / label

- **Surname:**
- **First name:**
- **Address:**
- **DoB:**
- **D No.:**
- **M/F:**
- **NHS No.:**

Name of Proposed Procedure or Course of Treatment

PERCUTANEOUS DILATATIONAL TRACHEOSTOMY

Statement of Health Professional (to be filled in by health professional with appropriate knowledge of proposed procedure, as specified in consent policy)

I have explained the procedure to the patient’s next of kin. In particular, I have explained:

- **Purpose of percutaneous tracheostomy:**
 - To facilitate ventilation and weaning from mechanical ventilation, more comfortable airway, secretions management, other:

- **Complications of a tracheostomy:**
 - **Immediate complications (peri-operative):**
 - Bleeding from damage of vessels in the neck (minor <5%, major <0.5%)
 - Malposition of tracheostomy tube (0.5%)
 - Significant deterioration in respiratory function / collapsed lung (2%)
 - Pneumothorax or pneumomediastinum (air trapping) (<0.5%)
 - Damage to the nerves in the neck (<1%)
 - Death (<0.2%)
 - **Delayed complications**
 - Tube blockage or displacement
 - Infection and / or ulceration of stoma site
 - Bleeding due to tube erosion of blood vessels or local tissue trauma
 - **Late complications**
 - Significant scarring requiring revision
 - Granulomata of the trachea
 - Possible change in voice
 - Tracheal stenosis (3-4%)

- **Any extra procedures which may become necessary following the procedure:**
 - Blood Transfusion
 - Emergency Surgery (for the complications stated above)

The following leaflet has been provided — Tracheostomy Patient Information Leaflet

Special Requirements: e.g. communication, translator

Signature

- Name (PRINT)
- Date

Name (PRINT)

- Job title

Signature

- Name (PRINT)
- Date

Name (PRINT)

- Relation to patient
- Verbal assent by phone from

South Tees Hospitals NHS Foundation Trust

June 2016

Critical Care Services

69
Percutaneous Tracheostomy Operating Procedure

PERCUTANEOUS DILATATIONAL TRACHEOSTOMY

<table>
<thead>
<tr>
<th>Patient details/label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surname</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>DoB</td>
</tr>
<tr>
<td>NHS No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Anaesthetist</th>
<th>Surgeon</th>
<th>Supervising consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Signature, GMC no, Print name and title)</td>
<td>(Signature, GMC no, Print name and title)</td>
<td>(Signature, GMC no, Print name and title)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local anaesthetic</th>
<th>Sedation</th>
<th>Analgesia</th>
<th>Relaxant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Throat pack used</th>
<th>Yes, if yes how many</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Asepsis:</th>
<th>Gown, Mask, Gloves, 2% Chlorhexidine / 70% Alcohol prep</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Technique</th>
<th>Landmark</th>
<th>Ultrasound</th>
<th>Direct bronchoscopy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Incision</th>
<th>Trachea located, number of passes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tracheostomy set</th>
<th>Tracheostomy tube</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Instruments checked and returned</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Difficulties and Complications</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Post Insertion CXR</th>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
</table>

If Throat Pack used: Removed Yes (number of throat packs removed)
Percutaneous Tracheostomy Procedure WHO Checklist

Time-out 1: Pre procedure (before operator scrubs)

- Is there assent?
 - Assent obtained and form 4 completed
- Any contraindications considered?
 - C-spine, anatomy, coagulopathy and drug allergies
- Feed? Insulin stopped?
 - Plans regarding enteral feeding and risk of hypoglycaemia understood
- Roles agreed
 - Operator, anaesthetist, nurse and runner roles delegated
- Tracheostomy tube for case ready
 - Tracheostomy tube type and size considered and available
- Equipment ready
 - Tracheostomy trolley complete and airway equipment to hand

The team agree tracheostomy is in the best interest of the patient and it is safe to proceed

Time-out 2: Prior to incision (operator scrubbed)

The team agree:

- The patient is anaesthetised, paralysed and adequately ventilated.
- The patient is optimally positioned, the neck is clean and local anaesthetic has been infiltrated.
- No one has any unvoiced concerns.

Time-out 3: Post procedure (operator confirms airway is secured)

The team agree:

- Need for chest X-ray discussed
- Throat pack(s) if present removed________________________ (please specify number of throat packs removed).
- Documentation completed: operation chart, tracheostomy sign, audit form (if relevant).
- Scope cleaned and sent for decontamination. Scope documentation (sticker x2) completed.
- Non-disposable instruments on tracheostomy tray checked and sent to CSSD. All sharps disposed safely in sharp bin.
- Feed to be recommenced ± insulin infusion.
- No one has any unvoiced concerns.
Tracheostomy Decannulation Checklist

Resolution of original need for tracheostomy insertion
- No planned intervention that will need an artificial airway within 2 weeks

Appropriate conscious level, able to maintain an open airway
- Patient will need to be observed for signs of airway obstruction post-decannulation

Minimal oxygenation requirements last 24 hours
- FiO2 < 40%

Minimal secretions
- PCF > 160 L/min. If cough effort insufficient

Able to clear independently or if cough effort insufficient
- PCF < 180 L/min) established used of cough assist device via mouth well tolerated by patient

Patient tolerating cuff deflation for 24 hours

If occlusion cap or speaking valve used, it should be tolerated for up to 4 hours

CVS stability

MDT (physiotherapist, SLT, specialist consultant, ward nurse, CCOT) informed and agreed

Staff trained in advanced airway management (critical care or anaesthetist) for possible complications available nearby or by the bedside if known previous problems with patient’s tracheostomy

Equipment
- Dressing pack and gauze
- Appropriate dressing
- Sterile water
- Gloves, apron and protective eye wear
- Appropriately sized tracheostomy tube and one a size smaller (available not opened)
- Oxygen, facemask or nasal spec
- Functioning suction unit and appropriate sized suction catheters
- Stethoscope
- Microbiological swab
- Resuscitation equipment available on the ward

Procedure
- Two person technique, clear understanding of roles
- Check emergency equipment availability
- Explain procedure to patient and gain patient consent where possible
- Position patient in semi-recumbent position
- When required place supplemental oxygen over nose/ mouth
- Remove old dressing and tapes and support the tube
- Suction patient
- Remove tube on expiration
- Observe stoma site, swab if required and clean stoma
- Check patient is comfortable
- Apply an appropriate dressing over the stoma site
- Advise patient to provide pressure to the stoma site when coughing and talking in the initial stages
- Document the procedure in the case notes and make a final check of the patient
Monitoring of the patient post decannulation

Assess for possible deterioration post decannulation.

End of bed assessment by experience nurse and perform NEWS initially at least every 15 minutes for first hour, then hourly for next 2 hours and increase to 4 hourly as stability allows.

Signs and symptoms that could indicate deterioration are:

- Breathlessness
- Laboured breathing
- Noisy respiration
- Stridor
- Increased respiratory rate
- Increased heart rate
- Excess use of accessory muscles
- Change in respiration pattern
- Change in respiration depth
- Agitation
- Oxygen desaturation

PLEASE INFORM WARD DOCTOR IF CONCERN.

IF AIRWAY PROBLEM OR RAPID DETERIORATION OF BREATHING PLEASE INFORM CRITICAL CARE OUTREACH (BLEEP 7000 JCUH AND XXXX AT FHN) AND SENIOR CRITICAL CARE DOCTOR / ANAESTHETIST (BLEEP 1005 JCUH, BLEEP 195 FHN)

CONSIDER CARDIAC ARREST CALL 2222 IF VERY URGENT
11. TRACHEOSTOMY EDUCATION AND COMPETENCIES

See separate draft document
12. AUDIT TOOLS

Needs updating:

- Tracheostomy care bundle compliance audit tool
- Tracheostomy follow up audit
REFERENCES

St George’s (2012) Guidelines for the Care of Patients with Tracheostomy Tubes. St. George’s Healthcare Trust.
